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Abstract: Advances in vibrational spectroscopy have propelled new insights into the molecular
composition and structure of biological tissues. In this review, we discuss common modalities and
techniques of vibrational spectroscopy, and present key examples to illustrate how they have been
applied to enrich the assessment of connective tissues. In particular, we focus on applications of
Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage
and bone properties. We present strengths and limitations of each approach and discuss how the
combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have
greatly advanced their biomedical applications. We show how these modalities may be used to
evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how “spectral fingerprints”
can be interpreted to quantify outcomes related to tissue composition and quality. We highlight
the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive
approach to assess properties of the extracellular matrix (ECM) associated with normal, developing,
aging, pathological and treated tissues. We believe this review will assist readers not only in better
understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these
approaches for their own research projects.

Keywords: fourier transform infrared (FTIR); near infrared (NIR); Raman; hyperspectral imaging;
fiber optic probes; cartilage; bone

1. Overview

Tissue quality and function are greatly dependent on molecular composition. Ad-
vances in analytical methods to assess tissue properties at the molecular level have long
provided valuable insights into human health, disease and the effects of therapeutics [1–6].
Here, we focus on how vibrational spectroscopy has contributed towards revealing details
of the molecular composition and structure of biological tissues. In particular, we highlight
the biomedical application of infrared and Raman spectroscopy for the assessment of extra-
cellular matrix (ECM) components of connective tissues. Although we focus on the analysis
of cartilage and bone, the approaches described here can be far broader, and may be applied
to investigate not only other types of connective tissues (tendon, ligament, dentin), but also
a multitude of biological components. For example, vibrational spectroscopy approaches
can often be applied to identify, analyze and quantify protein, collagen, proteoglycan
(PG), carbohydrates, lipid, mineral, nucleic acids and water, as described in the following
sections. Our aim is not only to review some current approaches and prospects, but also to
encourage readers who work with connective tissues, but are not necessarily familiar with
vibrational spectroscopy, to consider applying these methods to enrich their own research.

To facilitate ease of reading and understanding of the structural organization of
this review, we include a Table of Contents that lists sections and subsections (Table 1).
The reader will notice that we first describe properties of connective tissues, focusing
on cartilage and bone, followed by fundamental concepts of different modalities and
techniques of vibrational spectroscopy. We then focus on providing examples of many
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applications of vibrational spectroscopy for the assessment of cartilage and bone properties,
ending with brief concluding remarks on how these approaches have been and can be used
in the future to enrich biomedical investigation of tissue composition and quality.
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2. Connective Tissues

Connective tissues are the most abundant and diverse tissues in the human body,
responsible for numerous life-sustaining functions, including support, movement, protec-
tion, energy storage and transport of substances. All connective tissues originate from the
mesenchyme, and specialize along embryonic development acquiring their own unique
properties. The hallmark of most connective tissues is an extensive ECM component,
within which the cells are dispersed. The molecular composition and structure of this ECM
is essential to carry out the tissue functions [7,8]. Some types of connective tissues are
cartilage, bone, tendon, ligament, skin, adipose tissue, fascia, and dentin. Blood can also be
considered a connective tissue, due to its plasma matrix, but will not be discussed here.
Although the composition varies dependent on the connective tissue type, the ECM often
contains collagen fibers, water and glycosaminoglycans (GAG), which play important
roles in providing adequate mechanical properties to the tissues [7,8]. Here, we focus
on the application of vibrational spectroscopy for the assessment of ECM components of
cartilage and bone, but the same or similar approaches may be used to evaluate a variety
of connective tissues.

2.1. Cartilage

Articular cartilage is a soft tissue that covers the ends of diarthrodial joints. It min-
imizes the stress on the bone by distributing joint contact forces and reducing the joint
surface friction throughout a range of motion. The tissue has a multi-zonal architecture
consisting of surface, medial and deep zones, each with a unique composition, and distri-
bution of extracellular matrix components [9,10] (Figure 1). The heterogeneous distribution
is related to optimization of load resistance in cartilage [11]. Water is the largest constituent
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of articular cartilage, accounting for 70% to 80% of its total weight. The major organic com-
ponents of the extracellular matrix are type II collagen fibrils comprising 60% to 70% of the
dry weight, and proteoglycans that comprise 20% to 40% of the dry weight. Chondrocytes
are the only cell type found in cartilage and contribute less than 10% of the tissue vol-
ume [10,11]. The PG molecules are aggregated around collagen fibers and due to their high
negatively charged surface, have a high affinity to water. The relationship between these
matrix components varies with the organization within the tissue. The superficial surface
layer of cartilage has densely packed type II collagen fibrils that are oriented parallel to the
surface, a small amount of PG and a high water content. The middle transitional zone has
a lower water content, a higher concentration of PG, and a lower concentration of collagen
fibrils that are randomly oriented. The deep zone contains radially oriented collagen fibrils,
has the highest concentration of PG, and lowest percentage of water compared to the other
zones. As a result of tissue damage or a diseased state such as osteoarthritis (OA), the rela-
tionship between these components is disrupted. Since articular cartilage is an avascular
and aneural soft tissue, it has a very limited healing potential. Loss of proteoglycans or
disruption of the organization is usually the first microscopic evidence of tissue injury, or
an early disease process. The increase in water content and a loss of GAG (a building block
of PG), are significant changes that occur due to cartilage degradation [11]. These changes
are often initiated by the changes in collagen network. The qualitative and quantitative
assessment of these changes are critical for early detection of OA and cartilage injuries.

Figure 1. Schematic cross-sectional diagram of a healthy adult articular cartilage: (a) cellular organization
(b) collagen fiber organization in different layers of the cartilage. Image source: Buckwalter et al. [12].

2.2. Bone

The primary hallmark of bone tissue is its mineralized ECM, which is comprised of
apatite (calcium phosphate) mineral nanocrystals, type I collagen fibrils, water and lesser
amounts of a variety of non-collagenous proteins. Bone tissue quality and mechanical
integrity are greatly dependent not only on tissue geometry and architecture, but also on
the molecular composition and structure of the ECM at different hierarchical levels [13–15].
A schematic of the hierarchical structure of bone is shown in Figure 2. At the tissue level,
bone is divided into cortical (or compact) and trabecular (or spongy) bone. These two
compartments differ in several ways, and the molecular properties of each are directly
associated with their function. For example, compact bone is a dense tissue where the
ECM is organized into multiple adjacent osteons, which are cylindrical structures formed
by concentric tissue lamella surrounding a central vascular channel. In trabecular bone,
the tissue forms a mesh of interconnected lamella packets engulfed in bone marrow. Both
tissue types play critical roles in bone mechanics and physiology, and assessment of their
properties is key to better understanding of bone health and disease. In both cases, the
lamellar microstructure of the tissues is formed by arrays of mineralized collagen fibrils
displaying ordered alignments and patterns. The mineralization of collagen proceeds
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through the deposition of mineral nanocrystals within and onto the fibrils, in intimate
and organized association with the collagen molecules. At its most fundamental level, the
relative amounts, properties and distribution of ECM components are the drivers of bone
tissue quality. For example, changes in tissue mineralization degree, collagen and water
content, mineral nanocrystal size, and amount of carbonate (CO3

2−) and acid phosphate
(HPO4

2−) incorporated in the mineral have been associated with decreased bone strength
with aging and diseases, such as in osteoporosis and osteogenesis imperfecta [1,2,16–18].

Figure 2. Hierarchical structure of bone from macro to nano scale. The composition and structure of bone tissue at different
length scales are essential for bone health and function. Image source: Sadat-Shojai et al. [19].

3. Vibrational Spectroscopy

Vibrational spectroscopy has been a standard technique in many scientific and indus-
trial endeavors, as a label-free and often nondestructive tool to evaluate composition and
molecular structure of a large variety of sample types [1–3,16–18,20–31]. A unique strength
of vibrational spectroscopy is its ability to simultaneously assess multiple components
based on their inherent molecular constitution. The fundamental basis of vibrational spec-
troscopy is the interaction of light with the chemical bonds that form a molecule. These
chemical bonds are not static, but have periodic vibrations that alter bond length (stretching)
and angle (bending). Depending on their atomic and molecular environment, the bonds
vibrate with different frequencies, which interact differently with incident light and result
in a “spectral fingerprint” comprised of multiple characteristic absorbance bands. The
frequency positions, shape and intensities of these bands reflect the presence, properties
and amount of different components. Thus, analysis of the spectral data can provide rich
insights into the molecular composition of a variety of samples. For example, the intensity
of a protein absorbance band correlates to the amount of protein present in the sample,
while changes in its position and shape can inform on chemical and structural features of
amide (or peptide) bond environments. Moreover, evaluation of the ratio of selected bands
can yield important quantitative data from the spectra. For example, measurement of the
intensity ratio of a collagen and protein amide band results in assessment of the relative
amount of collagen in a sample. Note that spectral processing (for example, obtaining its
second derivative) may be necessary to reveal subtle and overlapping peaks, and that the
frequency positions of some bands may vary depending on sample type and instrumen-
tation. We recommend the reader keep this in mind while comparing their own spectral
data with those from literature and the frequency values shown here in the tables below.
This same principle is often applied in different modalities of vibrational spectroscopy to
evaluate a variety of tissue components.
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3.1. Vibrational Spectroscopy Modalities

Vibrational spectroscopy encompasses two well-established modalities, infrared spec-
troscopy and Raman spectroscopy. Moreover, infrared spectroscopy can be divided
into two distinct types, dependent on the frequency range of light that is used: mid-
infrared (MIR) (frequency range 400–4000 cm−1) and near-infrared (NIR) (frequency range
4000–12,500 cm−1). Of note, infrared spectroscopy in the MIR range is now most commonly
referred to as Fourier transform infrared (FTIR) spectroscopy, due to the fact that most
instruments incorporate an interferometer where a Fourier transform is used to convert the
acquired data to the frequency domain. Infrared spectroscopy is based on the absorbance
of incident infrared light by the vibrating molecular bonds within the sample, whereas
in Raman spectroscopy, an incident monochromatic laser is inelastically scattered upon
collision with the bonds. In both cases, the modified light is detected after interaction with
the sample, giving rise to a spectrum comprising absorbance or scattering bands char-
acteristic of specific molecular components. Each vibrational spectroscopy modality has
strengths and weaknesses, and have to be chosen carefully considering the experimental
goals, conditions and sample types, as described below. In some cases, it is interesting to
apply different modalities in a complementary fashion to gain a more complete perspective
of different components of the same sample.

It is also important to mention that different modalities and techniques of vibrational
spectroscopy have differences in complexity and sophistication of instrumentation, sam-
pling and data analysis. The reader may also need to take this into consideration when
choosing the optimal approach for their research, as factors such setup availability, sample
preparation constrains, and data acquisition time may play defining roles. For example,
FTIR spectroscopy analysis of powdered samples can often be easily carried out in many
laboratories using widely available equipment and software, whereas analysis of tissue
sections often requires more sophisticated spectral imaging systems and data analysis capa-
bilities. Similarly, some Raman spectroscopy approaches may require customized systems
or more complex laboratory setups. Throughout the following sections, we describe some
particularities involved in each approach; however, we suggest the interested reader to
look into more detail protocol papers to gain better knowledge about practical differences
in the application of the different modalities and techniques [22,26,32].

3.1.1. Mid Infrared (FTIR) Spectroscopy

FTIR spectroscopy is arguably the most widely used vibrational spectroscopy method
to evaluate biological tissues. In the MIR range, infrared spectroscopy can assess funda-
mental stretching and bending vibrations of molecular bonds, resulting in generally intense
and precise absorbance bands associated with specific components [1,22]. For example,
the frequency of some bands of importance to connective tissue assessment are shown in
Table 2. Typical FTIR spectra of cartilage and bone are shown in Figure 3a,b. The reader
will notice that absorbance bands of some components have very similar positions, which
must be considered before analysis. For example, in the FTIR analysis of a hydrated tissue,
it is likely that the absorbance band from water at ~1630 cm−1 will overlap heavily with
the amide I band from proteins at ~1650 cm−1. As a consequence, it is challenging to
reliably evaluate the amide I band in hydrated samples, as well as of water in samples that
have protein. Similarly, it is not possible to assess carbohydrate bands at 1200–900 cm−1

in mineralized bone samples, as this spectral region is often dominated by the phosphate
absorbance band from the apatite mineral. It is crucial to understand this limitation in all
modalities of spectroscopy, as it can direct the appropriate sample preparation procedure
(dehydration, decalcification) to different experimental goals.
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Table 2. Typical absorbance bands of relevance to the analysis of FTIR spectra of connective tissues.
[1,2,22,33,34].

Frequency (cm−1) Tissue Component

1740 Lipid (ester C=O stretching)

1650 Protein (Amide I; peptide C=O stretching)

1630 Water (OH bending)

1550 Protein (Amide II; C–N stretching and N–H bending)

1338 Collagen (side chain CH2 vibration)

1115 Mineral (HPO4
2− stretching)

1060 Carbohydrates (sugar ring C–O stretching)

1030 Mineral (PO4 stretching)

875 Mineral (CO3
2− bending)

856 Sulfated proteoglycan (C–S bending)

Figure 3. Typical vibrational spectra of cartilage and bone. (a) FTIR spectra of cartilage, (b) FTIR
spectra of bone, (c) NIR spectra of cartilage, (d) NIR spectra of bone, (e) Raman spectra of cartilage,
(f) Raman spectra of bone.
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It is also important to mention that different sampling modalities exist within FTIR
spectroscopy, and having the knowledge to select the right one can be of great value.
The most traditional sampling mode is achieved creating a thin pellet comprising a small
amount of powdered sample mixed with KBr, which does not absorb infrared light and
allows sample spectra acquisition by infrared light transmission thought the pellet. Simi-
larly, fine powdered samples may be dispersed in between two BaF2 windows instead of
mixed into a KBr pellet, which has the advantage of being nondestructive and requiring
less sample preparation. Another very well-established sampling modality of FTIR spec-
troscopy is attenuated total reflection (ATR), in which spectral data is collected from the
sample surface via an evanescent wave. The sample is simply placed in close contact with
a crystal, into which the incident infrared light enters and reflects on its internal surface,
creating an evanescent wave that interacts with the sample before the reflected light returns
to the detector. A clear advantage of ATR is its quick and straightforward data collection
procedure, requiring little to no sample preparation and allowing analysis of a variety of
sample types, including intact tissues. Its main disadvantage is the very small penetration
depth of the evanescent wave, which ranges from ~1–3 µm into the sample, dependent on
the wavelength (frequency) being investigated. Additionally, some features of the FTIR
spectra may vary depending on the sampling mode [35–38], and care should be taken
when comparing spectra collected using different modalities.

3.1.2. Near Infrared Spectroscopy

The application of NIR spectroscopy for the nondestructive assessment of connective
tissues has greatly advanced in the last decade. However, the interpretation of NIR spectra
is often not as straightforward as that of FTIR spectra, and understanding the limitations
and characteristics of this modality is critical for optimizing its application. Compared to
FTIR spectroscopy, the absorbance bands observed in the NIR spectra are typically less
intense, broader and less specific, arising from overtones and combinations of fundamental
bond vibrations in the MIR range [27,39,40]. The bands are also generally more overlapped,
often requiring further spectral processing to reveal underlying features with greater
specificity, as described below. Moreover, some components, such as phosphate from the
apatite mineral in bone, dentin and other mineralized tissues, are not present in the NIR
spectral range. However, absorbance bands from water, protein, collagen, PG and lipids
can be identified in the NIR spectra of connective tissues, in the frequency ranges shown in
Table 3. Typical NIR spectra of cartilage and bone are shown in Figure 3c,d.

Table 3. Typical absorbance bands of relevance to the analysis of NIR spectra of connective tissues.
[41–49].

Frequency (cm−1) Tissue Component

8500 Water (O–H stretching and bending)

7000 Water (O–H stretching)

6688 Protein/collagen (N–H stretching)

5800 Lipid (CH2 stretching)

5200 Water (O–H stretching and bending)

4890 Protein/collagen (N–H bending)

4610 Protein/collagen (C–H stretching and
deformation)

4310 Proteoglycan (sugar ring vibrations)

A strength of NIR spectroscopy is the ability to assess tissue water. Analysis of the
water absorbances can inform not only on the relative water content, but potentially on the
type of molecular environment in which the water molecules exist (free, loosely-bound,
tightly-bound), which can also relate to tissue function [50]. However, conversely, water
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absorbances can overwhelm the spectra when obtained from tissues with high water
content or in highly hydrated environments. It is also important to mention that water
assessment needs to be done carefully, as sample exposure to the environment can lead to
changes in water content in real time due to dehydration or moisture absorbance. This can
be of particular relevance when collecting multiple spectra or spectral images that can take
long periods of time (sometimes 1–2 h), leaving the sample exposed and susceptible to water
content changes during data collection. To overcome this issue, the use of environmentally-
controlled chambers may be necessary. For example, Ailavajhala et al. [46] designed a
chamber for collection of NIR spectral images of bone. With this chamber, they were able
to maintain a controlled environment with optimal conditions to evaluate samples without
external influences. To avoid water loss from hydrated samples, the chamber environment
was kept at high humidity conditions by pumping it with humidified air. In contrast,
to avoid moisture absorbance by dehydrated samples, the chamber was pumped with
desiccated air to create a low humidity environment.

Another major strength of NIR spectroscopy is its greater depth of penetration into
a sample compared to MIR, due to the higher energy of photons in the NIR range. This
makes it possible to assess several millimeters deep into tissues, which is much greater
that the few microns possible with FTIR spectroscopy in the MIR range (up to ~10 µm).
For example, Padalkar et al. [44] described a wavelength-dependent penetration depth
of NIR light into articular cartilage, reaching 1–2 mm in the 4000–5100 cm−1 frequency
range, 3 mm in the 5100–7000 cm−1 range, and 5 mm in the 7000–9000 cm−1 range. This
advantage greatly expands the applications of NIR spectroscopy to the assessment of a
variety of thick or intact tissues with little to no sample preparation and in a nondestructive
fashion. Moreover, assessing deeper into the tissue may provide a more complete view
of its bulk composition compared to surface analysis. Further yet, considering that NIR
light is non-ionizing, NIR spectroscopy may be applied for the analysis of living tissues
and organisms, including in humans [51–56]. Considerable advances have been made in
these applications in the last few years, including in functional NIR imaging [57,58], and
tissue imaging [42,46,49,59,60], which shows the potential to provide valuable data on
compositional properties associated with tissue quality and health in situ and in vivo.

3.1.3. Raman Spectroscopy

The fundamental concepts underlying Raman spectroscopy are different from those
of infrared spectroscopy [26,61,62]. In Raman spectroscopy, an incident monochromatic
laser is scattered upon interaction with molecular bond vibrations. Most of the scattered
light happens elastically, with no change in the energy and frequency of the light, which
is known as Rayleigh scattering. However, a very small amount of the incident light can
be scattered inelastically, showing either a loss or a gain in vibrational energy level and a
corresponding shift in frequency. This phenomenon is called the Raman effect, described in
1928 by the physicist C. V. Raman, who was awarded the Nobel Prize in Physics in 1930 for
his discovery. In the Raman spectrum, the elastically scattered light can be seen as a spectral
band with high intensity at the same frequency position as the incident light. This band
is called the Rayleigh line. When the incident photons lose energy upon scattering, the
Raman bands will be detected in lower frequency positions than the Rayleigh line, which
is called a Stokes shift. With gain of energy, the bands are detected in higher frequency
positions than the Rayleigh line, showing an anti-Stokes shift. In conventional Raman
spectroscopy, only the Stokes bands are typically analyzed, as they are always more intense
than their anti-Stokes counterparts.

Several connective tissue components can be identified based on the frequency posi-
tions (sometime referred to as Raman shift) of bands observed in the Raman spectrum, as
shown in Table 4. Typical Raman spectra of cartilage and bone are shown in Figure 3e,f.
An important strength of Raman spectroscopy is that it often requires little to no sample
preparation, allowing straightforward data collection from a variety of sample types. More-
over, Raman spectroscopy can have a reasonable depth of penetration into the sample
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(mms), enabling assessment of thick or intact tissues. Interestingly, in contrast to infrared
spectroscopy, water signals are often weak in the Raman spectrum, which avoids inter-
ferences from overwhelming water bands when analyzing heavily hydrated tissues. The
main limitation of Raman spectroscopy is interferences from laser-induced fluorescence
signals that can often obscure scattering bands. This is a particular problem in the case of
biological tissues, as the interaction of incident light with some molecules and impurities of
the ECM can generate the emission of fluorescence photons with higher efficiency than that
of the scattered photons, distorting the Raman spectra. Moreover, even when the autofluo-
rescence interference can be suppressed, the Raman signal from biological tissues is often
weak, and signal-to-noise ratio of the spectra may not be optimal. In fact, the approximate
signal-to-noise ratio of Raman spectrometers has been described as close to 30–80:1, while
FTIR spectrometers can often generate spectra with much greater signal-to-noise ratio, such
as close to 1000:1 [18].

Table 4. Typical scattering bands of relevance to the analysis of Raman spectra of connective tissues.
[2,17,61,63,64].

Frequency (cm−1) Tissue Component

1660 Protein (Amide I; C=O stretching)

1260 Protein (Amide III; C–N stretching and N–H bending)

1070 Mineral (CO3
2− stretching)

1060 Sulfated proteoglycan (S=O stretching)

960 Mineral (PO4 stretching)

850 Collagen (Proline; C–C stretching)

An important technical characteristic for the application of Raman spectroscopy is the
choice of the incident laser [26]. There is a large variety of monochromatic lasers that can be
used in a Raman spectrometer, varying from ultraviolet (UV) to visible to NIR wavelengths.
Among the different factors to consider, one of the most important is selecting a laser that
can achieve the best compromise between suppression of fluorescence and maximization
of Raman bands. In general, lasers with longer wavelength results in better fluorescence
suppression, but also requires more acquisition time to compensate for the weaker Raman
signals. For biological signals, the most standard laser wavelengths are 785 and 532 nm,
although others can also be used depending on the instrumentation. For each tissue type
and experimental condition, it is essential to verify in the literature and by trials which
incident laser can result in the best spectral quality.

It is also important to mention advances on other Raman-based spectroscopic modali-
ties, in particular coherent anti-Stokes Raman spectroscopy (CARS) and stimulated Raman
scattering (SRS) [62]. These modalities require more complex instrumentation, often in-
cluding multiple laser sources, but can bring important advantages for the assessment
of biological tissues. In CARS, multiphoton lasers are used to allow assessing the anti-
Stokes signals, which has the important advantage of reducing undesired fluorescence
signals from the sample. In SRS, an additional incident light is used to amplify specific
molecular bond vibrations and result in more intense Stokes scattering bands. Advances
in these modalities have the potential of greatly improving spectral signal while reducing
acquisition time.

3.2. Advanced Vibrational Spectroscopy Techniques

The application of vibrational spectroscopy has been growing considerably in the
past few decades following advancement in instrumentation and optical systems. Two
examples of major advances in vibrational spectroscopy are the coupling of spectrom-
eters to imaging systems and fiber optic probes, which enables an important expan-
sion of the biomedical application of these methods. When coupled to imaging sys-
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tems [1,2,27,31,34,42,46,49,59–61,63,65–80], it is possible to obtain hyperspectral images
of tissue sections, in which each micron-sized pixel corresponds to a spatially-defined
spectrum. Each hyperspectral image can be comprised of arrays of hundreds to thousands
of spectra and allow the analysis of multiple individual components based on the selection
of specific intensities or absorbances present in the spectra, presenting an excellent source
of information on the amount and distribution of tissue components. Coupled to a fiber
optic probe [45,51–56,81–92], vibrational spectroscopy allows data to be obtained from
intact tissues, and living tissues and organisms, in a nondestructive manner, including
from human subjects in clinical settings. This represents an important step forward with
the potential to translate this method into an advanced diagnostic tool for monitoring
tissue development, quality, disease progression and the effect of therapeutics.

3.2.1. Spectral Imaging

A major shift in the application of vibrational spectroscopy was the coupling of
spectrometers to microscope imaging systems [1,2,27,31,34,42,46,49,59–61,63,65–80]. Both
infrared and Raman spectrometers were first coupled to microscopes over 40 years ago, and
spectroscopic imaging technology has been advancing greatly ever since. Spectral imaging
offers a great advantage over conventional approaches where a single-point spectrum
is collected from bulk samples or large sample regions. The main strength of spectral
imaging is the ability to collect a matrix of spatially-defined spectra from multiple micron-
sized points throughout a region of interest. This data sets a hyperspectral cube with
three dimensions (X, Y, Z), where X and Y represent the spatial region of the sample and
Z the spectra, containing multiple frequencies (Figure 4). Data from the hyperspectral
image cube can be extracted by many approaches, the simplest of which is creation of a
two-dimensional map, with X-Y spatial locations and a color scale dictated by a specific
spectral feature, such as absorbance band intensity. For example, by assessing the intensity
of a protein amide I band in the spectra, we can obtain an image in which regions with
greater protein content will be shown as pixels with higher color intensity. A similar
approach can be used for bands of other components identified in the spectra (lipid,
collagen, PG, etc.). Thus, from one single hyperspectral data set, multiple individual
images can be obtained to show the amount and distribution of specific components
throughout the same region. This image analysis is often very straightforward, and can be
done simply by using the appropriate software to quantify the spectral feature of interest in
all the pixels simultaneously, rapidly generating a specific compositional image. Moreover,
images of different components can also be overlayed, providing visual representation and
quantifiable data on their spatial co-localization.

Hyperspectral images can be obtained by using FTIR, NIR or Raman spectroscopy.
Each imaging modality has strengths and weaknesses, and choosing the optimal approach
depends on several factors. The first factor is usually determining which modality is better
suited to identify the components of interest in each study. As described above, some tissue
components can be better assessed by specific modalities. For example, imaging bone
mineral would be very difficult to accomplish by using NIR spectral imaging; however,
NIR imaging is excellent to assess tissue water content and distribution. The sample
thickness is also a major factor. For example, standard transmission or reflectance FTIR
imaging requires thin sections, whereas NIR and Raman imaging can often be applied for
analysis of thicker samples. Finally, it may be important to consider the desired spatial
resolution. The spatial resolution of a hyperspectral image is referred to as its pixel size,
which may vary from ~1–50 µm depending on the imaging modality, instrumentation
and user-defined acquisition settings. Standard FTIR and NIR microscopes often allow
resolutions of ~10–50 µm, while ATR-FTIR and Raman imaging may achieve resolutions
down to ~1–2 µm. Ultimately, the choice of spectral imaging modality needs to be done
thoughtfully, attending to the experimental goal and conditions of the study at hand.
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Figure 4. Schematic of hyperspectral image. Each pixel of the spectral image corresponds to an
individual spatially-defined spectrum, from which specific features can be extracted to generate
multiple compositional maps. The figure illustrates a NIR hyperspectral image of an osteochondral
tissue section, in which the intensity of absorbance bands at single-wavenumber frequencies are used
to create several images to map the distribution of specific components. Scale bar: 500 µm. Image
source: Afara et al. [32].

The spatial resolution is arguably one of the most important aspects of spectral imag-
ing, as it determines the level of compositional detail that will be possible to identify in the
final images. In general, the desired spatial resolution value should be smaller than the
tissue components of interest to allow a more precise assessment. When the experimental
goal of a study is to evaluate very minute tissue components, standard equipment may not
be sufficient. Interestingly, more advanced spectral imaging systems have used different
strategies to overcome the resolution limits of traditional instrumentation and achieve
spatial resolutions at the sub-micron or nanoscale. For example, the combination of Raman
spectrometers with confocal microscopes has been widely used to improve spectral imag-
ing resolution to the sub-micron scale [61,73,93]. In a more recent imaging system, a new
modality of MIR spectroscopy called optical photothermal infrared (O-PTIR) spectroscopy
has been developed to allow sub-micron spectral imaging [94–96]. Moreover, this system
can combine O-PTIR and Raman spectroscopy to simultaneously image the same sample
region, resulting in complementary spectral images using these different modalities [97].
Even further, both infrared and Raman spectrometers have been combined with atomic
force microscopes (AFM) to allow obtaining spectral images with spatial resolutions down
to ~10 nm [74,98]. These and other advances in spectral imaging technology are clearly
shaping a new direction in the field of vibrational spectroscopy, towards allowing imaging
the chemical composition of biological tissues in much greater detail.

3.2.2. Fiber Optic Probes

Fiber optic probes have been one of the most powerful tools in modern spectroscopy
due to their versatility in both the visible and near infrared frequency ranges, as well as
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with the use of monochromatic light in Raman probes. They provide flexible solutions
for investigation of tissue samples in situ in multiple applications. Numerous clinical
applications are possible, including arthroscopic examination of soft connective tissues.
Fiber optic probes typically consist of separate illumination and collection optical fibers
connected to the light source and the detector, respectively. They merge to the tip of the
probe to enable simultaneous sample illumination and light collection. The geometry of
the probe tip varies dependent on the optimal coupling to the sample, or on the geometry
of the light emission from the probe tip. For example, Cooney et al. studied the sensitivity
and sampling volume of beveled fibers compared to other designs. They found that a
probe consisting of two beveled fibers is more efficient by at least a factor of 1.5 compared
to a dual fiber flat tip when sampling clear liquid [99]. The choice of optical fiber type
in a probe depends on the applications and the spectral range. Chalcogenide glasses
are widely used in MIR fiber optic probes for the spectral range 900–4000 cm−1. In NIR
applications, since that spectral region is very sensitive to OH vibrations, low-OH fused
silica fibers are widely used. Fused silica fibers are also used in Raman probes due to their
very low background signal in the Raman fingerprint region. Santos et al. have shown
that silica core-silica clad fibers, with acrylate coating and a black nylon jacket, provided
low background signal and good signal quality in in vitro measurements of brain tissue
of a 6-month old pig [100]. The versatility of fiber optic probes in cartilage assessment
has been shown for in vitro studies of engineered cartilage development [54,55,83,91,101],
ex vivo studies of cartilage degradation [81,102], and in vivo arthroscopic evaluation of
articular cartilage and subchondral bone [51]. Similarly, Raman spectroscopic probes have
also been used to assess articular cartilage quality [103], and have been used to monitor the
development of tissue engineered cartilage in vitro [91].

3.3. Spectral Data Analysis
3.3.1. Pre-Processing

Spectral data “pre-processing” refers to spectral data processing prior to quantitative
analysis, and is usually required to extract reliable information from spectra of physically
and chemically inhomogeneous samples such as biological tissues. These techniques im-
prove the robustness and accuracy of the subsequent analysis of the spectra by minimizing
effects from background, noise and scattering interferences, and from differences in sample
thickness. Various approaches are used to normalize spectra within a range in IR spec-
troscopy, but spectra may have broad underlying backgrounds [53,104,105]. While ratioing
to an appropriate background spectra can reduce much of this effect, first and second order
differentiation of the spectra completely removes the background component, attenuating
some undesired spectral features, and amplifying resolution of overlapping peaks [106].
Prior to derivative processing, a smoothing filter such as Savitzky-Golay is frequently used
to reduce noise. Detrending or deconvolution methods are also used in some spectral
analyses to reduce scattering effects, or to decompose superimposed spectral features
into individual components. These preprocessing methods can be applied to both IR and
Raman spectroscopy data. In Raman spectra, however, removal of cosmic ray artifacts and
the effect of fluorescence background needs targeted spectral processing. The cosmic ray
artifacts occur when high energy particles hit the sensitive charged couple device (CCD)
detectors resulting sharp, intense features in Raman signals. The simplest approach of
cosmic ray detection makes use of the temporal randomness of the artifacts and is thus
based on the comparison of two consecutive Raman sample measurements [105]. The
background fluorescence problem can be overcome by using methods that reduce the
fluorescence signal or increase the Raman signal (i.e., photobleaching, photoquenching),
removal of fluorophores from the samples, and using UV or NIR lasers that do not stimulate
fluorescence [105]. In NIR spectroscopy the most widely used preprocessing techniques
are scatter correction techniques (multiplicative scatter correction (MSC), Extended MSC
(EMSC) and spectral derivatives, such as Savitzky Golay filter with derivative [107].
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3.3.2. Post-Processing

Different univariate and multivariate chemometric methods are used to extract infor-
mation from the spectral data. A univariate analyses, such as assessment of an absorbance
peak intensity or the integrated area of a peaks can provide information on the relative
amount of a specific component present in the samples. However, in more complex spectra,
including those in the NIR range, overlapping absorbances can be challenging to analyze,
and may require a multivariate method. Towards that, principal component analysis
(PCA), partial least square (PLS) regression, cluster analysis, and neural network analysis
are approaches that have been used to extract information from complex spectra. Such
methods are reviewed in detail elsewhere [1,79,108,109], but are described briefly here.

Multivariate data analysis techniques allow analysis of large spectroscopic data sets
by reducing the dimensionality and complexity of data so that meaningful information
can be extracted. The primary emphasis on multivariate analysis of spectral data is often
unsupervised classification of the dataset, as for example has been done using PCA to
discriminate healthy and osteoarthritic cartilage [110]. This approach has also been used
along with linear discriminant analysis (LDA) for the identification of healthy and OA
cartilage in FTIR images of tissue regions and in states of degeneration [111]. Similarly,
hierarchical cluster analysis has been used to classify differences in collagen type in hyaline-
like cartilage and fibrocartilage-like repair tissue, with collagen II and collagen I mapping
respectively [82]. Further, supervised methods such as PLS regression can be employed to
extract information regarding compositional changes in healthy and OA cartilage. Such
analyses typically require large amounts of calibration data comprised of spectra from
tissues with known biochemical composition obtained using gold standard assays. These
data are used to create PLS models that are then the basis for prediction of unknown
sample composition. Palukuru et al. used NIR spectra obtained from bovine nasal and
articular cartilage pellets, and predicted the percentages of collagen and chondroitin sulfate
with a PLS model [41]. Similarly, PLS models based on NIR spectra of tissue engineered
cartilage were used to predict the tissue composition and mechanical properties of the tissue
engineered constructs at different developmental time points [55,56,83]. PLS regression
with a variable selection method was used to predict the collagen crosslink concentrations
based on FTIR spectral image data from bovine articular cartilage tissue with and without
threose treatment to increase cross-link concentrations [112]. In the NIR spectral range,
Prakash et al. found PLS regression with variable selection method as an optimal regression
approach spectroscopic evaluation of articular cartilage [113]. In addition to these linear
analytical methods, nonlinear statistical approaches, including machine learning algorithms
such as artificial neural networks (ANN), have been used recently. The Genetic algorithm
(GA) approach and least squares version of support vector machines (LS-SVM) methods
were implemented by Prakash et al. for NIR assessment of cartilage, but they ultimately
found PLS regression to be optimal compared to those methods for prediction of cartilage
tissue thickness and mechanical properties [113]. Overall, the use of multivariate analysis
methods and machine learning approaches enable extraction of important structural and
compositional information from connective tissue samples.

4. Application of Vibrational Spectroscopy for Connective Tissue Analysis
4.1. Applications for Cartilage Assessment

Vibrational spectroscopic approaches (mid-infrared, near infrared and Raman spec-
troscopy) provide excellent tools for assessment of articular cartilage. In combination with
microscopic imaging, they can be used for the assessment of histologic tissue sections to
obtain biochemical composition information at high spatial resolution. These techniques
can also be used with fiber optic probes for rapid clinical assessment of cartilage quality.
Specific examples are discussed below.
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4.1.1. Mid Infrared Spectral Analysis of Cartilage

FTIR spectroscopy and imaging in the MIR range (400–4000 cm−1) is a powerful tool
to assess normal, regenerating, and degraded cartilage composition. Camacho et al. and
Boskey et al. laid down the foundation of IR studies of cartilage with identification of
spectral markers of articular cartilage components for semi-quantitative analysis [1,34].
Those studies found that the integrated area of the Amide I absorbance (1590–1720 cm−1)
correlated with collagen concentration, and the ratio of integrated area of the PG sugar ring
(C-O) absorbance (985–1140 cm−1) to the amide I absorbance correlated with the quantity
of PG. Similarly, the CH2 side chain vibration of collagen gives rise to an absorbance
peak at 1338 cm−1 which is sensitive to the triple helical structure of collagen, and was
shown to decrease with the degradation/denaturation of cartilage. The integrated area
of this absorbance ratioed to the amide II peak (1490–1580 cm−1) was reduced in human
osteoarthritic tissues compared to normal tissue [1], indicating changes in the collagen
integrity of the articular cartilage. Apart from PG sugar ring absorbances, also known as
a carbohydrate peak (985–1140 cm−1), the integrated area of an absorbance at 850 cm−1,
associated with a C-S bending mode from PG molecules, was shown to correlate to PG
content in the cartilage [1]. Although some MIR absorbances of cartilage are clearly
associated with specific molecules, in some spectral regions processing of data is required
to isolate specific peaks. A study by Rieppo et al. found that second derivative spectra were
useful to tease out absorbances from collagen and proteoglycans in the 1000–1300 cm−1

range of data from bovine cartilage. They performed enzymatic removal of PG and
observed that peaks at 1062 cm−1 and 1374 cm−1 arose from proteoglycans specifically [24].
Additionally, polarized infrared light can be used with FTIR imaging to reveal the zonal
distribution of differently oriented collagen fibers based on the ratio of the amide I to
amide II absorbances [69]. The information in these foundational studies of native cartilage
has subsequently been applied in many areas of cartilage research, including towards
understanding of degraded osteoarthritic tissues [102,114–116], and characterization of
developing engineered constructs [60,117–119].

4.1.2. Near Infrared Spectral Analysis of Cartilage

NIR spectra constitutes of combination and overtones of molecular vibrations that
typically are observed as broad absorbance bands. Thus, the assignment of absorbance
peaks to a specific chemical constituent is challenging, and frequently requires multivariate
analyses for assessment of cartilage tissue. However, one excellent aspect of NIR studies is
that the NIR radiation has a penetration depth of up to ~1 cm in the spectral regions
of interest for connective tissues, and thus fiber optic probes can be used to acquire
information from the entire depth of cartilage tissue along with subchondral tissue. Similar
to MIR spectroscopy, several peak assignments have been made in NIR spectra of cartilage
with absorbance peaks from water and extracellular matrix components. These include
the peak at 5200 cm−1 associated with free and bound water in cartilage [43], whereas
the peak at 7000 cm−1 reflects free water in cartilage [43,55]. Palukuru et al. found
matrix-associated absorbance peaks in the combination band region (4000–5400 cm−1)
at 4312 cm−1 (PGs), 4610 cm−1 (collagen) and 4890 cm−1 (collagen) using spectral data
from pure component mixtures [41]. In a recent study, Kandel et al. also used pure
components and mixtures of articular cartilage components to investigate higher frequency
NIR regions using an NIR fiber optic probe. They found the absorbance peaks at 6402,
6556, 6687 cm−1 to be sensitive to the collagen content in cartilage samples, and the
absorbance peaks at 5778 and 5927 cm−1 sensitive to both collagen and PG content in the
cartilage [54]. Based on these initial peak assignments and data, hyaluronic acid-based
tissue engineered cartilage development was monitored non-destructively with an NIR
fiber optic probe [56]. In that study, it was found that the development of tissue engineered
cartilage plateaued at week 4 based on the biochemical and mechanical assays, and was
also reflected in the PLS model based on the NIR spectra of the constructs. More recently,
Kandel et al. found that engineered cartilage construct quality could be longitudinally
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monitored during development based on the NIR spectra of the constructs using the
baseline offset of raw NIR spectra, and PCA [54]. These studies strongly support the use
of NIR fiber optic spectroscopy for non-destructive assessment of developing cartilage in
in vitro environments (Figure 5).

Figure 5. Schematic of the application of NIR fiber optic spectroscopy for assessment of tissue engineered cartilage
development. Image source: Kandel et al. [54].

Several NIR spectroscopic studies have been carried out by the Afara and Toyras groups
as well to assess the utility of NIR fiber optics in in vivo arthroscopy studies [120,121]. These
were focused on the relationship between NIR spectral data and cartilage biochemical and
mechanical properties in normal and disease states. One study showed the application of
PLS-R using NIR spectra as a correlate to the swelling characteristics of cartilage based on
the PG content across healthy and mechanically degraded cartilage [122]. In another study,
NIR spectroscopy combined with machine learning techniques successfully distinguished
healthy and diseased cartilage [123]. Another study used PLS modelling techniques to
predict the thickness of the healthy and injured cartilage [124,125], and biomechanical,
histological and biochemical properties of articular cartilage [125]. PLS-discriminant analy-
sis (PLSDA) based on NIR spectra was also used to investigate mechanical properties of
bovine articular cartilage samples [126]. Most recently, the optical properties (absorption
and scattering coefficients) of articular cartilage tissue in the visible -NIR region (600 to
2500 nm) were assessed and found to be associated with proteoglycan content and equi-
librium moduli in the superficial zone (absorption coefficient), and proteoglycan content
and instantaneous and dynamic moduli in the middle and deep zones (scattering coeffi-
cient) [127]. Together, these studies strongly support the use of non-destructive NIR fiber
optic spectroscopy to evaluate articular cartilage health and disease in both research and
clinical settings.

4.1.3. Raman Spectral Analysis of Cartilage

Raman spectroscopy is based on the inelastic scattering of the light from the sam-
ple when its focused with a monochromatic (laser beam) light. The majority of light
scattered (elastic scattering) is filtered out and the weaker inelastic scattering forms a
characteristic spectrum of the sample corresponding to the molecular vibrational energies.
Raman spectroscopy does not require any sample preparation, and is not affected by the
hydration of the sample. Similar to FTIR, Raman spectroscopy can also be combined with
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microscopy providing a label free Raman microimaging of tissues. Raman spectroscopy
and imaging has been applied to numerous tissues including articular cartilage and bone.
Raman peak assignments of cartilage components have been well established including:
795 cm−1 (DNA), 856 cm−1 (proline), 875 cm−1 (hydroxyproline; associated with colla-
gen), 1245 cm−1 (amide III, N-H of collagen), 1410 cm−1 (COO of GAG), 1450 cm−1 (CH2
deformation of collagen) and 1668 cm−1 (amide I, C=O of collagen) [63,67,70]. These
peak intensities can be used to visualize the distribution of these components in the tis-
sue (Figure 6). Bergholt et al. investigated the zonal distribution of components using
the aforementioned peak assignments. Further, their study also showed the mapping
of collagen fiber orientation throughout the depth of the tissue using the Raman peak
intensity ratio at 1668 to 943 cm−1 [67]. Apart from these univariate or bivariate analyses,
multivariate analysis such as PCA can also be used for study of chondrocytes and the
extracellular matrix components. Bonifacio et al. demonstrated the use of PCA for mapping
of chondrocytes and extracellular matrix along the cartilage using Raman imaging [70].
Similarly, PLS regression models were also used for the semi-quantitative analysis of DNA,
Chondroitin sulfate, collagen and non-collagenous proteins as well as relative changes
of these components in OA using Raman microscopy [70]. Another study by Albro et al.
demonstrated the application of multivariate curve resolution (MCR) to quantitatively
measure the concentration distribution of cartilage ECM constituents (GAG, collagen, and
water) in native, degraded and engineered cartilage tissues [63].

Figure 6. Raman spectroscopic imaging of articular cartilage and the underlying calcified zone. Univariate Raman
spectroscopic mapping of articular cartilage based on the band intensity of (a) Water (3400 cm−1), GAG (1410 cm−1),
Collagen (1245 cm−1), Cytoplasm (1345 cm−1), DNA (795 cm−1), Apatite (960 cm−1) and combined. (b) High resolution
Raman spectroscopy image of chondrocytes and periceulluar matrix based on collagen, DNA, Cytoplasm, GAG and
combined. (c) Representative Raman spectra of these articular cartilage components. Image source: Bergholt et al. [67].

4.2. Applications for Bone Assessment
4.2.1. Mid Infrared Spectral Analysis of Bone

FTIR spectroscopy and imaging have long been a standard approach to assess bone
tissue quality. Analysis of the specific absorbance bands present in the FTIR spectra of
bone allow investigators to obtain a rich collection of properties related to both mineral
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and collagen [1,2] (Table 5), providing a powerful approach to reveal underlying molecular
and tissue characteristics associated with bone health and function. In particular, FTIR
spectroscopy has been a valuable tool to assess bone mineral composition and crystal
structure, as several mineral absorbance bands (phosphate, carbonate) are often clearly
identifiable in bone spectra. FTIR spectroscopy has been used to assess bone since the
1960s [128–130], resulting in the publication of numerous studies that contribute to the
better understanding of bone tissue properties in a variety of healthy and disease states, as
well as to evaluate the effects of therapeutics on bone components [34,69,71,72,131–138].
This can be generally illustrated by a PubMed search for “FTIR and bone”, which shows
over 3000 articles published on this subject, with an exponential increase in the last 20 years.
Among these, there are several interesting reviews that summarize outcomes from studies
in which FTIR spectroscopy and imaging were applied to assess changes in bone tissue
properties associated with aging, diseases and drug treatments [1,4,5,16], including very
recent ones [2,139]. In this section, we hope to avoid redundancy by limiting our discussion
to some illustrative examples of how FTIR spectroscopy can be applied to assess bone
properties. We do, however, encourage the interested reader to look within the vast
available literature on this subject for other interesting review papers and for more specific
application examples relevant to their own research projects.

Table 5. Typical FTIR spectral analysis approaches to assess bone compositional properties [1,2].

Peak intensity Ratio 1

(Peak Frequencies Shown in cm−1)
Bone Compositional Property

1030/1650
1030/1550 2 Mineral content (or mineral-to-matrix ratio)

1030/1020
960/1115 3 Mineral crystallinity

875/1030 Mineral carbonate content (or
carbonate-to-phosphate ratio)

1115/1030 Mineral HPO4
2− content

1660/1690 Collagen maturity (or collagen crosslink ratio)
1 Appropriate spectral analysis needs to be performed to quantify peak area or intensity, which is often measured
as integrated areas or second derivative peak heights. 2 This ratio may be a good alternative in hydrated tissues
when the Amide I protein band has contributions from water. 3 In ATR-FTIR spectra, this ratio was shown to
better correlate to bone mineral crystallinity [35].

Changes in bone health are often marked by changes in bone ECM at the tissue level,
which can contribute to a decrease in bone quality and increase in bone fragility. FTIR
spectroscopy has played a key role in revealing changes in the molecular composition and
structure of bone ECM underlying aging and diseases, such as osteoporosis, osteogenesis
imperfecta (OI) and diabetes. An interesting example of this application was described
by Masci et al. [77] studying changes in bone properties caused by α2-chain collagen
mutations in a knock-in mouse model of OI. In this study, they not only assessed how this
collagen mutation affected bone ECM compared to wild type controls, but also tested if
inducing sclerostin inhibition could be a potential treatment to improve bone properties
in mutant animals. Interestingly, they applied FTIR spectral imaging with ~7 µm spatial
resolution to evaluate both cortical and trabecular bone tissues of tibia and vertebra at
different ages, describing as outcomes the quantification of tissue mineralization, carbonate
and HPO4

2− substitutions in the mineral, mineral crystallinity and collagen maturity
(Figure 7). Their results showed several differences in the mutant OI mouse model bones
depending on tissue type and age, providing new insights into how collagen mutations
could affect bone properties underlying OI pathogenesis. Moreover, they showed that
sclerostin inhibition improved some bone properties altered in the mutant mice, such as
increasing carbonate and decreasing HPO4

2− substitutions in the mineral. These changes
in bone mineral composition are often associated with an increase in tissue maturity, which



Molecules 2021, 26, 922 18 of 31

could have an important contribution in understanding how sclerostin inhibition can
improve bone strength.

Figure 7. FTIR spectral imaging of cortical (top two panels) and trabecular (bottom two panels) bone from wild type (WT)
and +/G610C (OI mouse model) mice. Spectral analysis allowed mapping several compositional parameters of the tissues:
mineral relative to matrix ratio (MIN/MAT), carbonate relative to phosphate ratio (C/P), collagen maturity (XLR), mineral
crystallinity (XST) and content of HPO4

2− substitutions in the mineral (HPO4). Image source: Masci et al. [77].

FTIR spectral imaging has also been applied to evaluate bone tissue heterogeneity,
as the spatial variation of bone properties has been emerging as an indicator of bone
quality. For example, Wang et al. [80] imaged cortical and trabecular bone tissue from
iliac crest biopsies of women with and without bone fracture history, as well as with
or without a history of hormone replacement therapy (HRT). As outcomes from their
analysis, they obtained pixel intensity histograms reflecting the distribution of tissue
mineralization, carbonate substitutions in the mineral, mineral crystallinity and collagen
maturity throughout the tissues. Interestingly, they noticed that bone fragility was related
not only to the mean values obtained from the images, but also to parameters of their
gaussian distributions, such as widths and tails. An important indication from this study
was that bone tissue heterogeneity may play an important role driving bone strength,
with healthier bones presenting a generally wider spatial variation of their properties,
characterizing the presence of both younger and mature bone tissue regions.

Applications of FTIR spectroscopy have greatly advanced our understanding of bone
tissue health and function, and also have a potential clinical relevance to aid in the diagnosis
of bone diseases. Bone histomorphometry of iliac crest bone biopsies remains a gold
standard approach for the tissue level assessment of bone quality in the diagnostic of several
metabolic bone disorders, such as osteoporosis, osteomalacia and renal osteodystrophy, as
well as to investigate effects of therapeutics [140–142]. As described above, FTIR spectral
imaging allows visualization and quantification of multiple components and properties
of the mineralized bone ECM from a single section without the need for addition of
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external contrast, offering a clear opportunity to enrich standard histopathological bone
assessment. Additionally, minute amounts of biopsy tissue may be quickly assessed by
ATR-FTIR spectroscopy to provide bulk measurements of diverse bone properties. Analysis
of the FTIR-determined tissue properties, individually or in combination, may be of great
value to determine tissue-level bone quality metrics associated with the diagnosis and
prognosis of different bone diseases. Although further research is necessary to validate this
association, it is possible that FTIR spectroscopy may soon become a standard approach
for the histopathological assessment of bone tissue in clinical practice.

Finally, it is also interesting to highlight a few applications by which FTIR spectroscopy
revealed new insights into bone tissue ECM composition and organization. For example,
FTIR spectral imaging has been a valuable tool for assessment of soft tissue-to-bone inter-
faces, which are essential to skeletal function. In these studies, compositional images with
~6.25 µm pixel resolution allowed the visualization and quantification of ECM changes
across cartilage-to-bone [30] and ligament-to-bone [143,144] junctions. Image analysis
showed as outcomes not only distribution mappings of individual ECM components (col-
lagen, PG, and mineral), but also the degree of collagen alignment in the different tissue
regions. Interestingly, line scan analyses of the outcome images provided quantitative
information on their stepwise variations across the tissue interfaces. For example, using
this approach, Khanarian et al. [75] observed that ECM distribution across bovine knee
osteochondral interface showed variations dependent on both tissue region and age, pro-
viding valuable fundamental information to understand the structure-function relationship
of the cartilage-to-bone junction in aging, diseases and drug treatments. In a recent study,
another interesting insight gained by the application of FTIR spectroscopy was towards the
elucidation of the pathway of bone mineral development. This study showcased a unique
strength of FTIR spectroscopy for the identification of a specific absorbance band associated
to an amorphous calcium phosphate mineral. By investigating a variety of developing
bones, Querido et al. [78] identified the existence of a transient amorphous mineral pre-
cursor formed in bone prior to apatite crystallization, which advances our knowledge of
bone mineralization and development. It is also important to highlight a recent study by
Imbert et al. [74] where bone tissue composition and structure were assessed by AFM-FTIR
spectral imaging. Compared to conventional FTIR images with ~6.25 µm pixel resolution,
AFM-FTIR images with spatial resolution of 50–100 nm showed a great enhancement in the
assessment of tissue properties, identifying not only changes related to tissue maturity but
also the alternating pattern of the lamellar structure of individual bone trabecula. Further
studies in this field can provide valuable insights into how bone tissue properties at the
nanoscale may affect bone quality and strength.

4.2.2. Near Infrared Spectral Analysis of Bone

When compared to FTIR, NIR spectroscopy and imaging has not been as widely
applied for bone assessment. This is most likely due to the fact that absorbances from bone
mineral are not apparent in the NIR spectra, often rendering this approach not optimal
to assess the mineralized bone tissue. However, NIR spectroscopy is highly sensitive
to other important components of bone ECM, such as water and proteins, and can thus
provide valuable information about key tissue properties. In fact, several studies within
the last decade have highlighted the great potential of NIR spectroscopy for assessing bone
tissue composition and structure in a variety of sample types and experimental conditions.
Although most of the described applications require further development and validation, it
is undeniable that NIR spectroscopy holds the potential to become a valuable tool to assess
bone tissue properties in the near future.

An important application of NIR spectroscopy is for the nondestructive assessment of
subchondral bone tissue within articular joints. Due to the high depth of penetration of
the NIR light, it is possible to reach the subchondral bone through the overlying cartilage
without damaging the tissue. This approach may be especially relevant to assist the clinical
assessment of subchondral bone quality during onset and treatment of degenerative joint
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diseases. In an interesting early study, Afara et al. [85] used NIR spectroscopy with a fiber
optic probe to assess subchondral bone in intact knee joints of rat models with induced-
osteoarthritic degeneration. They also analyzed the same samples using micro computed
tomography (micro-CT) to obtain standard bone quality measurements. Using multivariate
data analysis approaches, they showed that features from the NIR spectra correlated
well with the obtained bone mineral density (BMD) and bone volume, highlighting the
potential of NIR spectroscopy to assess bone properties. This was later corroborated in a
subsequent study with human cadaver knees [86], showing the correlation of NIR spectral
features with other micro-CT morphometric properties of subchondral bone, such as plate
thickness, trabecular thickness, volume fraction, and structure model index. Further yet,
Sarin et al. [51] demonstrated the application of a novel arthroscopic NIR fiber optic
probe to assess cartilage and subchondral bone in vivo. The study was performed in
juvenile equines, with the probe tip placed inside the knee cavity during surgery. NIR
spectra were collected in contact with the cartilage surface, in several spots. The knees
were then extracted, and additional NIR spectra were collected ex vivo from the same
spots. Properties of the subchondral bone in the corresponding spots were determined by
micro-CT. Strengthening the previous findings, they showed that the ex vivo NIR spectra
correlated well with bone morphometric properties. Although the correlations obtained
with the in vivo NIR spectra were not as reliable, this study represents an important
proof-of-concept achievement, which may be improved upon further development of
arthroscopic spectral collection approaches.

NIR spectral imaging has also been applied to assess bone composition, providing
valuable information on the content and distribution of tissue water and collagen. In an
important study, Rajapakse et al. [49] used NIR imaging to evaluate whole cross-sections
of cadaveric human tibia. Interestingly, it was possible to image sections with 450 µm in
thickness, illustrating the ability of this approach to evaluate thick samples with minimal
preparation. Using absorbance bands associated with different ECM components, they
were able to obtain images showing the distribution of water and collagen throughout
whole bone sections with micron spatial resolution (Figure 8). Additionally, they also used a
lipid absorbance band to show the distribution of bone marrow fat at the endosteal surface
of the sections. These images represent an important step forward into the application
of NIR spectroscopy to assess bone composition at the tissue level. Another interesting
finding of this study was that the quantification of water absorbance bands in the NIR
spectra correlated well with tissue bound-water content determined by magnetic resonance
imaging (MRI), strengthening the application of NIR spectroscopy to reliably assess bone
tissue water. Additionally, the intensity of NIR water absorbance bands was later showed
to strongly correlate also to gravimetric water content, which is the standard method to
quantify water content in tissues. In a subsequent study, Hong et al. [59] further showed a
negative correlation between the distribution of bone water and collagen determined by
NIR spectral imaging and the porosity index of cortical bone determined by MRI. Moreover,
they showed that combining NIR compositional parameters to the porosity index values
could potentially contribute to the performance of multivariate regression models to predict
bone stiffness. This is an interesting preliminary finding, which encourages research into
whether incorporating parameters obtained by NIR spectroscopy into current bone fracture
prediction models could improve their accuracy.
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Figure 8. NIR spectral imaging of whole cross-sections of human tibia. The intensities of specific
absorbance bands were quantified to produce images showing the distribution of water, collagen
and fat within the tissue. Image source: Rajapakse et al. [49].

A key advantage of the application of NIR spectroscopy is the ability to assess
bone tissue water. For example, bone water content can be quantified by assessing the
5184/4608 and 7008/6688 cm−1 band intensity ratios, which showed strong correlation
(R > 0.90) to standard gravimetric water measurements [46]. Additionally, multivariate
analysis by PLS also showed that the NIR spectra of bone can strongly reflect its hydration
state [46]. Importantly, this assessment is not limited to content and distribution, but also
the molecular environment in which water is located. In bone, water molecules can occupy
different compartments, such as within pores (free water), loosely bound to protein and
mineral surfaces or tightly bound between collagen chains and within the mineral crystal
lattice. Recently, Ailavajhala et al. [47] showed that NIR spectroscopy can be applied to
differently assess both loosely and tightly bound water in bone. They used a variety of sam-
ple preparation procedures (dehydration, deuteration, demineralization, denaturing) to
regulate composition and molecular environments of cortical human bone samples. Using
this strategy, they were able to show that the water absorbance bands in the NIR spectra
of hydrated bone inform primarily about loosely bound water; however, in dehydrated
samples, the remaining water bands are associated to different types of tightly bound water.
In these samples, the absorbance band at ~5200 cm−1 is associated to a combination of
water tightly bound to either collagen or mineral, while the one at ~7000 cm−1 is exclusively
assigned to water tightly bound to the mineral. In fact, they showed that analysis of this
mineral water band in dehydrated samples correlated to tissue mineralization, suggesting
that this approach could enable using NIR spectroscopy to indirectly assess bone mineral
content and distribution. In summary, these findings highlight the application of NIR
spectroscopy to specifically assess different types of bone tissue water, which could have
an impact in better understanding the role of water in bone quality.

Finally, it is important to highlight a recent study in which NIR spectroscopy was
used in a clinical setting to assess bone quality of individuals with OI, a disease marked by
low bone quality and increased fragility. In this study, Shanas et al. [52] used a fiber optic
probe to allow collection of NIR spectra noninvasively. The probe tip was simply placed
in contact with the individual’s skin on top of the second metacarpal bone. In this region,
they showed that the NIR light was able to penetrate through the skin tissue and that a
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great part of the spectral signals arose from the underlying bone. Interestingly, several
NIR spectral parameters associated with water and collagen were found to correlate with
standard bone quality measurements obtained by dual-energy X-ray absorptiometry (DXA)
and hand X-ray radiographs, as well as with age. The correlated bone measurements
included z-score, bone health index (BHI), cortical area and thickness of the metacarpal
bone and its relative cortical area (RCA). This preliminary study highlights for the first
time the clinical feasibility of the application of NIR spectroscopy for the noninvasive
assessment of bone tissue in vivo.

4.2.3. Raman Spectral Analysis of Bone

Analysis of Raman bands results in outcomes mostly equivalent to those obtained by
FTIR spectroscopy, such as quantification of tissue mineralization, mineral crystallinity,
amount of carbonate substitutions in the mineral, and collagen maturity [2,16] (Table 6).
Raman spectroscopy and imaging have been widely applied to investigate bone mineral
and matrix composition, as it can be illustrated by numerous publications on the sub-
ject [35,145–152], including several comprehensive reviews published in the last
decade [2,16–18,61,153]. In particular, we can highlight two reviews by Morris and
Mandair [18] and Mandair and Morris [17] which focus specifically on the application of
Raman spectroscopy to assess bone quality and strength. Additionally, in a very recent
review, Taylor and Donnelly [2] present a comprehensive summary of how Raman imaging
has been used to evaluate changes in bone tissue composition associated with several
diseases, such as osteoporosis, diabetes, osteogenesis imperfecta and renal osteodystrophy.
Moreover, the authors show an interesting discussion on the correlation of Raman out-
comes with bone tissue mechanical properties at micron- and millimeter-scale, highlighting
the importance of tissue compositional properties for bone mechanical integrity. Here, we
aim to avoid redundancy by focusing on a few key examples to illustrate applications of
Raman spectroscopy and imaging to assess bone properties. However, we encourage the
interested reader to look into the previously cited publications for more in-depth examples
relevant for their own research.

Table 6. Typical Raman spectral analysis approaches to assess bone compositional properties [2,16].

Spectral Parameter (cm−1) 1 Bone Compositional Property

960/1660 intensity ratio Mineral content (or mineral-to-matrix ratio)

Full width at half maximum (FWHM) at 960 Mineral crystallinity

1070/960 intensity ratio Mineral carbonate content (or
carbonate-to-phosphate ratio)

1660/1690 intensity ratio Collagen maturity (or collagen crosslink ratio)
1 Adequate spectral analysis needs to be performed to quantify peak intensity, which can often be measured as
integrated areas or second derivative peak heights.

An interesting application of Raman spectroscopy was shown by Khalid et al. [145]
evaluating changes in mineral and collagen quality in bone samples infected in vitro with
Staphylococcus aureus. The effects of bacterial growth on bone properties were monitored in
using a confocal Raman microscope at different timepoints. The authors obtained several
outcomes from the Raman spectra, and found that infection led to an increase in collagen
crosslinking, decrease in matrix mineralization, increase in carbonate substitutions in the
mineral and decrease in mineral crystallinity. This study shows a promising application
of Raman spectroscopy as a tool to aid the diagnostic of osteomyelitis, which could have
a great clinical relevance. Moreover, this study illustrates clearly how several properties
of bone ECM can be assessed by Raman spectroscopy, describing approaches that can be
applied to the analysis of a variety of bone samples in many different research projects.
Another characteristic of bone that can be assessed by Raman spectroscopy is tissue-bound
water. In an interesting study, Unal et al. [146] identified different water compartments
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within bone tissue using a custom-made short-wave infrared (SWIR) Raman spectroscopy
system and different sample preparation procedures. In particular, they found specific
bands associated with collagen-bound water (at ~3220, 3325 and 3453 cm−1) and mineral-
bound water (at ~3584 cm−1). In a following study, Unal and Akkus [147] took these
findings further by quantifying the contents of collagen-water and mineral-water based
on their peak intensity ratios relative to the band of collagen at ~2949 cm−1. Interestingly,
they found that these ratios had several significant correlations with bone mechanical
properties, including toughness, post-yield toughness, elastic modulus or strength. These
studies highlight not only the potential of Raman spectroscopy to assess bone water, but
also how water molecules bound to either collagen or mineral may play an important role
in contributing to bone health.

Recently, Cardinali et al. [154] described an innovative application of Raman spectral
imaging by using correlative Brillouin–Raman microspectroscopy to evaluate the spatial
correlation of bone tissue mechanical and compositional properties at the microscale.
Briefly, Brillouin spectroscopy is a nondestructive light-scattering technique which can
assess the elastic modulus of a tissue, allowing identifying and mapping the distribution of
hard and soft components within bone. The authors imaged human diaphyseal femoral
cross sections, in regions spanning from the periosteal surface to the endosteal trabecular
bone. Brillouin images showed that hard tissue components were primarily found in
cortical bone regions, showing a strong spatial correlation with the distribution of tissue
mineralization determined by Raman spectral imaging (Figure 9). In contrast, soft tissue
components were more present in transition zone and trabecular bone, and were correlated
with the distribution of lipids and blood, which arise from the bone marrow. In another
very recent study, Kochetkova et al. [155] combined polarized Raman spectroscopy with
compression testing to assess the role of collagen alignment on tissue mechanical properties
at the microscale. For this study, the authors used a confocal Raman microscope varying the
polarization angles of the exciting laser to collect a series of polarized spectra from the same
region of interest. Analysis of the amide I/amide III band ratio of the different polarized
spectra was shown to inform on the 3D orientation of the mineralized collagen fibrils
within the tissue. The authors then used focused ion beam to create micropillars (5 µm in
diameter) on the surface of the bone sample for compression analysis using a microindenter.
This experimental design allowed them to perform mechanical testing on the same regions
where they had collected polarized Raman spectra, making it possible to describe the
strong influence of collagen alignment on tissue mechanics at the microscale. Together,
these studies illustrate the application of different Raman spectroscopy approaches to
reveal insights into how tissue level composition can affect bone mechanical function.

It is also important to mention advances in the application of Raman spectroscopy for
in vivo bone assessment. In two interesting studies [65,66], confocal Raman spectroscopy
was used to evaluate initial stages of bone mineralization in living zebrafish larvae, re-
vealing the formation of early mineral particles rich in HPO4

2− inside of cells and close to
blood vessels. These findings provide new insights into the pathway of bone mineral de-
velopment, and in light of very recent advances towards the use of Raman spectroscopy for
in vivo imaging of zebrafish tissues [73], more studies in this field are certainly upcoming.
Interestingly, in vivo Raman spectroscopy has the potential to go far beyond analysis of
zebrafish larvae, including its application for the clinical assessment of bone diseases and
healing processes. In the last 10–15 years, the coupling of Raman spectrometers with fibers
optic probes has greatly advanced the applications of this technique for non-invasive bone
tissue assessment. In particular, an important propeller of this advancement was the devel-
opment of spatially offset Raman spectroscopy (SORS), in which an array of illumination
and collection fibers is strategically arranged on the surface of the tissue to optimize signal
detection from multiple positions (spatial offsets) around the region of interest. This config-
uration allows assessing deeper into the tissue (up to a few cm) [90], which can be a great
advantage for the evaluation of bone tissue through skin, fat, muscles and other soft tissues.
In fact, SORS has been applied to assess bone properties in vivo transcutaneously in several
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studies with rodents [156–160] and humans [87,88]. For example, Shu et al. [160] showed
that spectral data obtained by SORS transcutaneously from living mice tibiae correlated
with standard bone quality metrics, such as areal bone mineral density (aBMD), volumetric
bone mineral density (vBMD) and maximum torque (MT). These studies briefly illustrate
a potential direction for the application of Raman spectroscopic approaches towards the
clinical assessment of bone quality.

Figure 9. Correlative Brillouin–Raman microspectroscopy. P: periosteal sheath, D: cortical region, W: transition region, and
T: trabecular region. From the periosteal surface to the trabecular bone (a, top to bottom), note in the Brillouin spectra a
decrease in the amount of hard components and increase in soft components. This is followed by a reduction in mineral
(phosphate, carbonate) and protein (amide I, amide III) Raman bands and increase in those of lipid and blood (heme). The
Brillouin image (b) showing the distribution of hard components has a strong spatial correlation with the Raman image (c)
of the distribution of tissue mineralization (R = 0.78). Image source: Cardinali et al. [154].

5. Concluding Remarks

There is a high demand for methodologies that allow a comprehensive and nonde-
structive assessment of tissue molecular composition and structure. In this review, we
discussed some of many ways by which FTIR, NIR and Raman spectroscopy have been
applied to meet this demand. The biomedical relevance of these techniques cannot be
underappreciated, as they provide a unique approach for the label-free assessment of mul-
tiple tissue properties associated with health and disease. In particular, the application of
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hyperspectral imaging shows an excellent advantage over or complement to current tissue
imaging methods, allowing rich information-filled images to be obtained with micron spa-
tial resolution showing the distribution and content of several tissue components (protein,
collagen, proteoglycan, mineral, water, lipid) associated with tissue quality and function.
With advances in hyperspectral imaging systems, this application can move even further
for assessment of tissue composition at the nanoscale. Moreover, the implementation of
fiber optic probes for non-invasive data collection shows a promising clinical relevance
by allowing evaluation of tissue quality from individuals in vivo, either transcutaneously
or during endoscopic procedures. It is important to also highlight that each vibrational
spectroscopic modality has strengths and weaknesses, and thus the choice to apply a spe-
cific modality and technique should be done with great care and consideration, aiming to
achieve specific experimental goals. In summary, we hope this review provides an overall
guide to assist with the understanding of how vibrational spectroscopy can be applied in
the biomedical field to enrich the evaluation of the molecular composition of connective
tissues, and of biological tissues in general.
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